C4 > VECTORS

Worksheet B

The points A, B and C have coordinates (6, 1), (2, 3) and (-4, 3) respectively and O is the origin. Find, in terms of \mathbf{i} and \mathbf{j} , the vectors

 \overrightarrow{OA}

b \overrightarrow{AB}

 \mathbf{c} \overrightarrow{BC}

 \overrightarrow{CA}

Given that $\mathbf{p} = \mathbf{i} - 3\mathbf{j}$ and $\mathbf{q} = 4\mathbf{i} + 2\mathbf{j}$, find expressions in terms of \mathbf{i} and \mathbf{j} for

a 4**p**

b q - p

c 2p + 3q

 $\mathbf{d} \quad 4\mathbf{p} - 2\mathbf{q}$

3 Given that $\mathbf{p} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$ and $\mathbf{q} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, find

a | p |

b | 2**q** |

 $\mathbf{c} \mid \mathbf{p} + 2\mathbf{q} \mid$

d | 3**q** – 2**p** |

Given that $\mathbf{p} = 2\mathbf{i} + \mathbf{j}$ and $\mathbf{q} = \mathbf{i} - 3\mathbf{j}$, find, in degrees to 1 decimal place, the angle made with the vector \mathbf{i} by the vector

a p

b q

c 5p + q

 $\mathbf{d} \mathbf{p} - 3\mathbf{q}$

5 Find a unit vector in the direction

 $\mathbf{a} \quad \begin{pmatrix} 4 \\ 3 \end{pmatrix}$

 $\mathbf{b} \quad \begin{pmatrix} 7 \\ -24 \end{pmatrix}$

 $\mathbf{c} \quad \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

 $\mathbf{d} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$

6 Find a vector

a of magnitude 26 in the direction $5\mathbf{i} + 12\mathbf{j}$,

b of magnitude 15 in the direction $-6\mathbf{i} - 8\mathbf{j}$,

c of magnitude 5 in the direction $2\mathbf{i} - 4\mathbf{j}$.

Given that $\mathbf{m} = 2\mathbf{i} + \lambda \mathbf{j}$ and $\mathbf{n} = \mu \mathbf{i} - 5\mathbf{j}$, find the values of λ and μ such that

 $\mathbf{a} \quad \mathbf{m} + \mathbf{n} = 3\mathbf{i} - \mathbf{j}$

b 2m - n = -3i + 8j

8 Given that $\mathbf{r} = 6\mathbf{i} + c\mathbf{j}$, where c is a positive constant, find the value of c such that

 $\mathbf{a} \cdot \mathbf{r}$ is parallel to the vector $2\mathbf{i} + \mathbf{j}$

b \mathbf{r} is parallel to the vector $-9\mathbf{i} - 6\mathbf{j}$

c | r | = 10

d | **r** | = $3\sqrt{5}$

9 Given that $\mathbf{p} = \mathbf{i} + 3\mathbf{j}$ and $\mathbf{q} = 4\mathbf{i} - 2\mathbf{j}$,

a find the values of a and b such that $a\mathbf{p} + b\mathbf{q} = -5\mathbf{i} + 13\mathbf{j}$,

b find the value of c such that $c\mathbf{p} + \mathbf{q}$ is parallel to the vector **j**,

c find the value of d such that $\mathbf{p} + d\mathbf{q}$ is parallel to the vector $3\mathbf{i} - \mathbf{j}$.

Relative to a fixed origin O, the points A and B have position vectors $\begin{pmatrix} 3 \\ 6 \end{pmatrix}$ and $\begin{pmatrix} -5 \\ 2 \end{pmatrix}$ respectively.

Find

a the vector \overrightarrow{AB} ,

 $\mathbf{b} \mid \overrightarrow{AB} \mid$

 \mathbf{c} the position vector of the mid-point of AB,

d the position vector of the point C such that OABC is a parallelogram.

C4 **VECTORS** Worksheet B continued

11 Given the coordinates of the points A and B, find the length AB in each case.

a
$$A(4,0,9)$$
, $B(2,-3,3)$

b
$$A(11, -3, 5), B(7, -1, 3)$$

12 Find the magnitude of each vector.

$$a 4i + 2j - 4k$$

$$\mathbf{b} \mathbf{i} + \mathbf{j} + \mathbf{k}$$

c
$$-8i - j + 4k$$
 d $3i - 5j + k$

13 Find

a a unit vector in the direction $5\mathbf{i} - 2\mathbf{j} + 14\mathbf{k}$,

b a vector of magnitude 10 in the direction $2\mathbf{i} + 11\mathbf{j} - 10\mathbf{k}$,

c a vector of magnitude 20 in the direction $-5\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$.

14 Given that $\mathbf{r} = \lambda \mathbf{i} + 12\mathbf{j} - 4\mathbf{k}$, find the two possible values of λ such that $|\mathbf{r}| = 14$.

Given that $\mathbf{p} = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$, $\mathbf{q} = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix}$ and $\mathbf{r} = \begin{pmatrix} -2 \\ 5 \\ -3 \end{pmatrix}$, find as column vectors, $\mathbf{r} = \begin{pmatrix} -2 \\ 5 \\ -3 \end{pmatrix}$ \mathbf{r} 15

$$a p + 20$$

$$b p - 1$$

$$\mathbf{c} \mathbf{p} + \mathbf{q} + \mathbf{r}$$

$$d 2p - 3q + 1$$

Given that $\mathbf{r} = -2\mathbf{i} + \lambda \mathbf{j} + \mu \mathbf{k}$, find the values of λ and μ such that **16**

a
$$\mathbf{r}$$
 is parallel to $4\mathbf{i} + 2\mathbf{j} - 8\mathbf{k}$

b r is parallel to
$$-5i + 20j - 10k$$

17 Given that $\mathbf{p} = \mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$, $\mathbf{q} = -\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ and $\mathbf{r} = 2\mathbf{i} - 4\mathbf{j} - 7\mathbf{k}$,

a find
$$|2\mathbf{p} - \mathbf{q}|$$
,

b find the value of k such that $\mathbf{p} + k\mathbf{q}$ is parallel to \mathbf{r} .

18 Relative to a fixed origin O, the points A, B and C have position vectors (-2i + 7j + 4k), $(-4\mathbf{i} + \mathbf{j} + 8\mathbf{k})$ and $(6\mathbf{i} - 5\mathbf{j})$ respectively.

a Find the position vector of the mid-point of AB.

b Find the position vector of the point D on AC such that AD : DC = 3 : 1

19 Given that $\mathbf{r} = \lambda \mathbf{i} - 2\lambda \mathbf{j} + \mu \mathbf{k}$, and that \mathbf{r} is parallel to the vector $(2\mathbf{i} - 4\mathbf{j} - 3\mathbf{k})$,

a show that $3\lambda + 2\mu = 0$.

Given also that $|\mathbf{r}| = 2\sqrt{29}$ and that $\mu > 0$,

b find the values of λ and μ .

Relative to a fixed origin O, the points A, B and C have position vectors $\begin{pmatrix} 6 \\ -2 \\ -4 \end{pmatrix}$, $\begin{pmatrix} 12 \\ -7 \\ -4 \end{pmatrix}$ and $\begin{pmatrix} 6 \\ 1 \\ -8 \end{pmatrix}$ 20

respectively.

a Find the position vector of the point M, the mid-point of BC.

b Show that O, A and M are collinear.

The position vector of a model aircraft at time t seconds is $(9-t)\mathbf{i} + (1+2t)\mathbf{j} + (5-t)\mathbf{k}$, relative 21 to a fixed origin O. One unit on each coordinate axis represents 1 metre.

a Find an expression for d^2 in terms of t, where d metres is the distance of the aircraft from O.

b Find the value of t when the aircraft is closest to O and hence, the least distance of the aircraft from *O*.